

Font Selection and Font Composition for Unicode

Martin J. Dürst and Marc-Antoine Parent

1

MultiMedia-Laboratory, Institut für Informatik der Universität Zürich
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, e-mail: mduerst@ifi.unizh.ch

and

Centre de Recherche Informatique de Montréal
1801, avenue McGill College, Bureau 800, Montréal (Québec) Canada, H3A 2N4

e-mail: Marc_Antoine.Parent@crim.ca

Note:

 This is a prepublication version of a paper that will be published in the Proceed-
ings of the 7th International Unicode Conference. Copyright for this and the final ver-
sion is held jointly by the authors and by Unicode, Inc. This version is not intended for
wide dissemination.

The Proceedings with the final version of this paper will be available at the confer-
ence, to be held in San Jose, CA, on Sept. 14/15, 1995 (for further information, contact
Global Meeting Services, 3627 Princess Avenue, North Vancouver, B.C., Canada V7N
2E4, email: conference@unicode.org, voice: +1 604 983 9157, fax: +1 604 983 9158) or af-
ter the conference from Unicode Inc. (P.O. Box 700519, San Jose, CA 95170-0519,
U.S.A., email: unicode-inc@unicode.org, voice: +1 408 777 5870, fax: +1 408 777 5082).

There are some differences between this and the final version, which are mainly mo-
tivated by the problem of printing Japanese characters on printers without Japanese
fonts. The current version of the paper contains EPSF bitmaps for some Japanese char-
acters. These EPSF are optimized for 24dpmm (600dpi) printers. With other printers,
dropouts or antialiasing effects may lead to suboptimal representation of the Japanese
characters.

1.

 The second author’s work was part of Alis Technologies Inc’s “Internet en Français” project
to develop Lys, a multilingual mail agent. For information on Lys, please contact Alis: 3410 rue
Griffith, Montréal, Québec, Canada, H4T 1A7; Fax: (514) 342-0318; e-mail: info@alis.ca

7th International Unicode Conference - 1 - San Jose, September 1995

Font Selection and Font Composition for Unicode

Martin J. Dürst and Marc-Antoine Parent

1

MultiMedia-Laboratory, Institut für Informatik der Universität Zürich
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, e-mail: mduerst@ifi.unizh.ch

and

Centre de Recherche Informatique de Montréal
1801, avenue McGill College, Bureau 800, Montréal (Québec) Canada, H3A 2N4

e-mail: Marc_Antoine.Parent@crim.ca

Abstract

 – The integration of the current scripts of the world into a single character en-
coding standard (Unicode/ISO 10646) poses new challenges to system software and
user interface designers, typographers, and font providers. Constructing or designing
all-encompassing “Unicode fonts” is not feasible for several reasons in most cases;
much more flexible solutions are necessary.

The paper analyses the requirements for flexible font selection and composition
mechanisms from the viewpoints of typography, user interface, programmer interface
and resource usage. Based on an object-oriented application framework, an architec-
ture to satisfy these requirements in an extensible way is proposed and implemented.
The tasks of font selection and glyph mapping are reduced to the same basic concepts,
which also lead to interesting solutions for problems such as CJKV glyph disambigua-
tion, and allow the easy integration of proprietary algorithms.

1 Introduction

For most people dealing with text processing systems, from users to programmers, the
relation between character codes and glyphs in a font was simple: For every character
code, there was a glyph, and vice versa, and every font contained glyphs for all char-
acters. The great majority of non-specialists expect the same for Unicode: The all-en-
compassing “Unicode font”.

For three reasons, this expectation is not going to be fulfilled: First, the relation be-
tween characters and glyphs is not one-to-one; for some scripts, complex operations
are necessary. Second, the resources needed for a single complete Unicode font, and
even more for a reasonable variety of Unicode fonts, are not available. This is true both
in terms of human work by font designers and, for the near future, in terms of storage
space. Third, from a typographic viewpoint, a single large font is not flexible enough
to address the requirements of multiscript documents.

However, once a user knows about Unicode, he is not very interested in additional
explanations, and expects the system to behave as if there were one or several Unicode
fonts, unless he gives more detailled specifications. To achieve such a behaviour, this
paper proposes a general scheme of font composition and font and glyph selection,

1.

 The second author’s work was part of Alis Technologies Inc’s “Internet en Français” project
to develop Lys, a multilingual mail agent. For information on Lys, please contact Alis: 3410 rue
Griffith, Montréal, Québec, Canada, H4T 1A7; Fax: (514) 342-0318; e-mail: info@alis.ca

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 2 - San Jose, September 1995

which can be used in circumstances where only very few fonts are available, as well as
for very high quality typography.

In Section 2, this paper gives an overview of the requirements for a font selection
and composition scheme. Section 3 presents the new concepts of composite font and
base font, and the three main kinds of composite fonts, namely font arrays, font cas-
cades, and font sets. Several interesting applications of composite fonts are explained
in Section 4. Section 5 gives background and details of our implementation, and Sec-
tion 6 compares our concepts with existing font composition schemes.

2 Requirements

Due to the vast differences in available resources, the requirements for font selection
and font composition schemes cover a wide range from low end to high end. At the
low end, we should try to assure basic readability, or at least make the user aware of
the fact that glyphs are missing. At the high end, we should provide mechanisms to
implement optimal typographic solutions for many kinds of multilingual documents.

2.1 Requirements of Multilingual and Multiscript Typography

To understand the requirements for multiscript typography, it is important to realize
that multiscript documents come in a very wide variety. This goes without saying for
the number of possible combinations of scripts, as well as for the basic variety that ex-
ists even for monolingual documents. Less known, but equally important is the ratio
of usage of characters from different scripts, and the length of stretches of each script.
In the past, typesetting multiscript documents was difficult, and there exist only few
examples. Typographic theory and practice for multiscript documents are still in their
infancy, and the increasing possibilities to compose true multiscript documents will
will help them growing up.

The considerations made by Bigelow and Holmes [BH93] about their Unicode font
already show that an attempt towards a full Unicode font faces many problems that
have to be addressed very carefully. They mention the choice of a sans-serif style, with
less cultural associations, the use of more differentiated diacritics, or the adjustment of
Hebrew to a size between Latin capital height and x-height. The general objective is a
‘harmonized design’, regularizing basic weights and alignments, but preserving es-
sential and meaningful differences.

Doing this for the Latin alphabet with all the Unicode extensions, and for alphabets
such as Greek and Cyrillic, which share a large part of their history and typographic
tradition with the Latin alphabet, is already a formidable task. Trying this for less re-
lated scripts becomes even more difficult. Very fundamental design concepts of West-
ern typography, such as the uniform gray value of a line of text, cannot be used e.g. for
Japanese character design.

Not only do the problems get larger if character history and typographic traditions
are less related, but also problems increase dramatically as the number of scripts in-
creases. While it may be relatively easy to find a solution for scripts A and B, and an-
other for scripts B and C, this does not provide a solution for all three scripts together.

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 3 - San Jose, September 1995

As an example, consider Hebrew, Latin, and Arabic. Matching Latin glyphs with He-
brew glyphs, the Latin glyphs should have rather large x-height and small ascenders
and descenders to account for the fact that ascenders and descenders are virtually non-
existent in Hebrew. On the other hand, combining Latin with Arabic, a Latin font with
small x-height and large ascenders and descenders may be preferred to match similar
features in the Arabic script. For a single Unicode font with uniform design, a compro-
mise is necessary, which will be suboptimal for many texts with restricted script usage.

Another problem in high-quality typography is the ratio of usage of characters from
different scripts. It may very well be that a different size ratio is necessary depending
on whether some Hebrew words appear in a text written with Latin letters, or vice ver-
sa. This may even depend on the context. In an English text where Hebrew words are
the subject of the discussion, Hebrew might preferably be somewhat larger or bolder
than in a text where Hebrew equivalents are just given for reference, and may be read
over. The role of the different scripts in the document influences their visual relation.
The boundary between the composition of matching fonts (according to whatever cri-
teria) and the explicit markup of foreign script portions, e.g. as

bold

, is of course not
very well defined, and has to be chosen depending on the text.

The combination of different scripts can even lead to problems that can only be
solved on the level of microtypography. The most important line of reference in the
Latin script is the baseline, whereas ideographs are aligned to their center. For longer
stretches of ideographs, it is best to try to align their center to that of the Latin text. On
the other hand, for short sequences of ideographs and especially for single ideographs
with a clearly visible baseline (such as or , as opposed to or), the relation to
the baseline of the Latin characters becomes more and more important. Even neigh-
bouring characters can have an influence; ideographs that look right between standard
text can look vertically deplaced between parentheses.

With all these problems, it should be clear that configurability and flexibility are
very important. This applies both to the composition of Unicode fonts with a wide cov-
erage from fonts for different scripts, as well as to the flexibility with respect to aspects
such as size combinations, glyph selection, and glyph placement, where new schemes
and algorithms should be easy to integrate into a system whenever desired.

The above explanations tried to show that a fixed, all-encompassing Unicode font is
not the final solution for multiscript typography. However, this in no way meant to
discourage the important design efforts towards Unicode fonts, such as those of
Bigelow/Holmes [BH93], Everson (his shareware fonts are available from ftp://dku-
ug.dk/CEN/TC304/EversonMono10646 or ftp://midir.ucd.ie/mgunn/Everson/
EversonMono 10646), Haralambous [HP95], and hopefully others.

Few users have a selection of fonts for several scripts wide enough to find good
combinations easily. In these situations, a general design is by far preferable to a bad
match of individual fonts. Also, Unicode for most scripts contains more characters
than a standard font for that script; this applies particularly to the Latin script, even
more so because most of the general symbols belong more to the Latin script than to

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 4 - San Jose, September 1995

any other. Extending existing fonts to cover the whole glyph set necessary in a single
script for Unicode is therefore also very important.

Last but not least, trying to design well-matching type of different scripts, and
adopting design ideas from other scripts, is an interesting artistic undertaking. It can
lead to completely new designs of great excellence.

Whereas currently, uniform designs or the combinations of matching fonts have to
be done by the type designer or the user, it might become possible to some extent in
the future to automatize this process, and to provide higher quality in many specific
situations with technologies such as Multiple Masters and others [MB93]. Similarly,
with the number of characters increasing, more structured approaches to font design
[Dür93], which are currently in the research stage only, may become more viable.

2.2 User Interface Requirements

From an user interface viewpoint, it is very important that interventions by the user
are minimal. For a text with frequent small portions of foreign script, the user does not
want to specify input method, font, and additional attributes such as language, size,
and vertical adjustment over and over again. In general, the input method can be
changed most easily with a keyboard shortcut, and has to be changed anyway. The
font, on the other hand, should not have to be changed explicitly.

What is also important is that the system reacts in a predictive way and does not
mess around with the user’s specifications. If he selects

Helvetica

, he does not want
that to be changed to anything else just because the rendering system has no way to
render Arabic characters with a

Helvetica

 setting.

2.3 Implementation Requirements

Implementation requirements can be split into two categories: General requirements
and the specific requirements for the implementation platform we are using, the appli-
cation framework ET++ [WGM89, WG94]. A more detailed discussion of our general
approach to software globalization is contained in [Dür95]; this stands in contrast to
earlier and more narrow attempts at localizing ET++ [Sat95].

Generally, it is very important to see that an average application programmer does
not have the knowledge nor the motivation to care about multilingual issues, nor is it
easy for her to test correct behaviour. This means that besides programs and compo-
nents that specifically treat language-dependent aspects of text, no additional pro-
gramming effort should be necessary. This of course includes font specifications; in
this respect, there is little difference between a programmer and a final user. On the
other hand, it is important that when really needed, an application programmer can
easily introduce completely new functionality and is not bound to the limitations of
fixed APIs or configuration files.

Another implementation requirement is efficiency, both in space and time. For ap-
plications with graphical user interfaces that contain many short text items, these items
should be as lightweight as possible. Having to specify runs for different fonts on such

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 5 - San Jose, September 1995

texts makes them more heavy than if only a single font can be specified that can render
whatever characters are used.

The use an object-oriented application framework such as ET++ both provides the
base to realize the above requirements, and defines requirements of its own. The most
important aspect is the general portability designed into ET++ [Wei92]

2

. This means
that the rendering model has to be very general and on a rather low level. In fact, for
text rendering there is a single function that connects the application framework with
system-specific code; this function draws a single glyph. Another aspect is that as a
publicly available framework, ET++ has to rely on openly available fonts, which come
in a very wide variety of glyph sets and encodings. On the other hand, ET++ should
not disallow the use of proprietary fonts by users who have acquired them.

3 Composite Fonts

The requirements of the previous section can be fulfilled only by a system that makes
a basic distinction between two kinds of fonts, namely

base fonts

 and

composite fonts

.
The use of composition is a very important principle in object-oriented software
[GHJV95], and here again shows its strengths. Base fonts are the fonts that we all know
from conventional systems; they cover a usually rather small subset of Unicode, with
a consistent design. Composite fonts, on the other hand, are responsible to cover Uni-
code as generally as possible.

3.1 Glyph Mapping and Font Selection

Both base fonts and composite fonts can incorporate table-based and algorithmic func-
tionality. Base fonts will care for glyph selection and mapping, whereas composite
fonts have to select appropriate subfonts.

The simplest base font will just do a one-to-one mapping from the Unicode charac-
ters it covers to the glyph encoding it uses; more sophisticated base fonts will take into
account the script-specific and font-specific character-to-glyph mappings. Assigning
this functionality to fonts, and not building it into the core text rendering routines of a
system, allows to use fonts with different encodings and different ligaturing mecha-
nisms for the same script in the same system. This makes the system easily extensible
for new scripts and new glyph mapping schemes. Even proprietary glyph mapping
schemes for highest-quality typography can be added.

Composite fonts also incorporate functionality. They have to decide what portions
of a text are rendered with what base font. Many ways to do this can be imagined; we
will introduce three important ones starting in Section 3.3. Some interesting and not
immediately obvious applications will be presented in Section 4.

3.2 Virtual Fonts and Real Fonts

With the above distinction between composite fonts and base fonts, how can we assure
that when a user specifies

Helvetica

, which obviously exists as base font, he gets Japa-

2.

 At present, there exist ports for X11, SunView, OpenGL, the Macintosh, and Windows NT.

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 6 - San Jose, September 1995

nese drawn with Japanese letters, which are not usually contained in

Helvetica

, and
which therefore have to be selected by a composite font? To achieve this, a font can
play both the role of a composite font and of a base font. When

Helvetica

 is used for
rendering a text, it is addressed as a composite font. The composition is constructed so
that it will address

Helvetica

 again as a base font for those characters that can indeed
be rendered with the base font. For the other characters, the composition will reference
other fonts as base fonts, maybe with intermediate composite fonts.

We call the fonts that play both roles

real fonts

. Of course, a user or programmer may
not be satisfied to always have the same fixed combinations. Additional combinations
can be created, e.g. a font called

MyNewSansSerif

. Such fonts are adressable only as
composite fonts, but not as base fonts, and are therefore called

virtual fonts

.
Also, it is possible that due to system limitations (e.g. only 256 glyphs per font), font

composition is used below the level accessible to the user. Such fonts are not adressa-
ble as composite fonts, and therefore are called

hidden fonts

.

3.3 Font Arrays

A first kind of composite font is the font array. A font array is a very deterministic com-
posite font; it knows by itself which of its components can draw what characters. Usu-
ally, components are responsible for a single range of Unicode characters. Font arrays
can be used to simulate large fonts if these are not available due to limitations of the
underlying rendering system. Another use is the splitting of fonts designed or rear-
ranged for Unicode into smaller parts to avoid loading the whole font if only small
parts of it are used. As Section 6 shows, schemes similar to font arrays are available in
several display or printing systems.

3.4 Font Cascades

A font cascade is a composite font with clear priorities, for use in situations that are not
as clearcut as in the case of a font array. A font cascade does not know by itself what
glyphs its components can render. It starts by giving fonts with higher order priority
a chance to render the text. Text portions that cannot be rendered by fonts with higher
priority are passed to fonts with lower priority in turn. This procedure guarantees that
the font specified by the user is used whenever possible. With the correct sequence,
this also makes separate masking unnecessary. Masking otherwise has to take care that
e.g. Latin characters are not taken from a Greek font, or Kana from a Korean font, even
if they are available there.

Long cascades can lead to inefficiencies. But if the fonts of more frequently used
scripts are arranged before the less used scripts in the cascade, this is not a problem.
Finding the position of the next character that can be rendered with a given base font,
so as to pass the intermediate stretch down the cascade, is very fast.

3.5 Font Sets

A font set treats its component fonts in a more equal way than a cascade, incorporates
more functionality, and gives a wider selection of possibilities. It can also address

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 7 - San Jose, September 1995

some very specific problems, such as the selection of glyph variants from different East
Asian typographic traditions (see Section 4.2). The basic implementation of a font set
looks for the component font that can render the longest stretch of text. This can pro-
vide well-matching glyphs and can be more efficient on a display system that has a
large overhead for font switching.

Other strategies for deciding between different fonts can be implemented, for exam-
ple any kind of quality rating. However, the more complex the strategy, the more time
will be used for evaluation, even if in many cases, most fonts drop out very early be-
cause there is a character they cannot render. For higher efficiency, it is possible to re-
strict lookahead to a given number of characters.

As a special case, a font set can decide whether in the rendering of combining char-
acters, priority is given to a separate rendering with a high-quality font, or integrated
rendering, maybe with a font that does not exactly match the font selected by the user.

More crucial than efficiency is stability. A font set treats its component fonts in a
more equal way than a font cascade. It is therefore more volatile to changes in a text,
and to the way text stretches are used for rendering. A single insertion or deletion may
lead to a longer run for a certain font, or give it a better quality rating. Also, if render-
ing is done on units of lines or paragraphs for efficiency reasons, or even parts of lines,
a different font may be chosen if the font selection process starts at a different charac-
ter. Such changes are highly undesirable for the user. Without care, this can even lead
to nasty loops during reformatting. Thus font sets should be implemented and used
with great care.

4 Applications of Composite Fonts

Besides standard font and glyph selection, composite fonts in their various forms al-
low to cover a wide range of related problems. In the following, some particularly in-
teresting examples are given.

4.1 Last Resort Font

A special position is taken by the last font in a font cascade; it is a kind of “lender of
last resort”. If it is asked to render a text portion, this means that the character cannot
be rendered as desired, and that there is most probably no appropriate glyph. Still,
there are many things that can be done, one after another or alternatively. The selection
can be made by the system implementor, or in more elaborate systems by the applica-
tion programmer or the user.

A composite font may have been defined to include a font of each of the scripts
used, with the understanding that this covers all the necessary characters. Still, it is
possible that a given font for a script does not contain a character, whereas another font
in a different style, and maybe from a different supplier, contains that character. There-
fore, a first thing the last resort font can do is to try to search all the fonts loaded in the
application, defined in the application, or available on the system. As this uses pro-
gressively more resources, it has to be carefully implemented, if at all.

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 8 - San Jose, September 1995

Another possibility, maybe after the above has failed, is to display some mechanically
generate identification of the character. One variant is the use of four hexadecimal dig-
its, arranged in a square, as on the Macintosh. Depending on the context, readable
glyph sequences for unavailable combinations of combining characters (e.g. u" for ü)
can be provided.

Another variant is to display a glyph indicating the script or category (e.g. symbols,
dingbats,…) of the character only. It has been argued that such glyphs could be added
to the character set of Unicode, but this should not be done

3

, for two reasons: First,
these are not characters themselves, they are only used on the meta-level to speak

about

characters and glyphs (respectively their absence). Second, they should not be provid-
ed in a font, and much less in a character set, but should be part of the application
framework itself to assure display in any situation.

An even simpler solution is to display the same shape for all characters that cannot
be rendered. In some cases, width information about the corresponding glyph may be
available, and the shape may be adapted appropriately. It may be similar to, but
should be distinguishable from, the glyph for U+FFFD, the replacement character for
characters that cannot be

represented

 (as opposed to displayed) in Unicode. In a config-
uration debugging mode, a popup dialog might also appear, trying to give installation
hints to the user.

Additional resources may be made available through the network. In the context of
the worldwide web, for example, unavailable glyphs might be replaced by inline im-
ages obtained from a special ‘glyph server’, or by a single active inline image repre-
senting an unknown character, which on activation would display additional
information or trigger further attempts at higher-quality rendering, going as far as
having the server send the whole document in bitmap form. Having the user trigger
additional work, instead of doing this as a default, is reasonable because the demand
on the system can by heavy, and in many cases, a user will have downloaded a docu-
ment accidentally and will understand as much with replacement characters as he
would with a high-quality rendering.

Similar solutions can also be envisioned for cases where transmission is requested
in a form that cannot directly encode all characters of the document. ISO 10646, code-
by-code identical to Unicode, is very likely to become the document character set for
HTML [BC95, work in progress]. The document character set mainly defines the inter-
pretation of numeric character references (

&#nnn;

 , where nnn is the decimal repre-
sentation of the character); it will take some more time until it is accepted as the default
character encoding for documents that go beyond ISO 8859-1 (Latin-1).

4.2 CJKV Glyph Disabiguation

A font set can provide a simple and efficient solution to choose between different
glyph variants for the typographic traditions of East Asia. The basic idea for this solu-
tion is due to Glenn Adams [personal communication, 1994]. Chinese (traditional or

3.

 For ideographs, the Geta mark (U+3013) is available for historic reasons.

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 9 - San Jose, September 1995

simplified), Japanese, Korean, and historical Vietnamese

4

 all use Han ideographs.
These characters have been unified in Unicode, as this has been done for all other
scripts. Because of the great number of characters and the variety of similarities and
historical developments, an explicit, well-defined model [Uni92, p. 15] was intro-
duced, based on criteria from existing Japanese standards. This model assures basic
readability and round-trip conversion. However, for high quality rendering, different
glyphs are frequently necessary even in the same typeface [Lun94], although the main-
stream typefaces are different for each typographic tradition.

With a small amount of lookahead, disambiguation is easily possible in an appro-
priately configured font set. If fonts for the corresponding local standards are used,
disambiguation will come at no additional programming cost. A font of Japanese ori-
gin, containing the glyphs of the Japanese standard JIS X 208 [Lun93], will on average
not be able to render more than two or three subsequent characters in a Chinese text,
and vice versa.

In general, the following features can be used for disambiguation: First, simplifica-
tions above a certain degree have separate codepoints in Unicode; these are used in
distinguishing simplified Chinese and Japanese. Second, additional characters have
been invented locally; this applies for Vietnamese and Japanese. Third, the frequency
distribution of certain characters is widely differing, to the extent that some characters
are well-used somewhere, whereas they are obsolete somewhere else. Fourth, phonet-
ic scripts of different nature complement the ideographs; this applies for Japanese (Ka-
na) and Korean (Hangul).

This scheme works correctly for single-language documents and documents with
different languages in each paragraph or line. On the other hand, very short foreign
language pieces, such as person or place names, may not be detected, but in these cas-
es, ‘native’ glyphs are used anyway in standard typographic practice, such as newspa-
pers. More problems arise with isolated entries in menus and similar places, where
localization mechanisms [Dür95] can provide appropriate solutions.

The integration of CJKV glyph disambiguation into the general font selection mech-
anism by means of a font set demonstrates the general usefulness of composite fonts,
assures that glyph disambiguation is available for a wide range of cases automatically,
and hopefully removes some of the mostly unsubstantiated concerns against Unicode
in this point.

4.3 Character Replacement

Besides trying to get the best possible result with the available font resources, compos-
ite fonts can also easily be used for more fancy effects. Transliteration, e.g. from
Cyrillic to Latin, can be a last resort solution when a Cyrillic font is not available, but
it can also be a means to display phonetically readable characters to an user who does
not know the Cyrillic alphabet, even if corresponding glyphs are available. Transliter-

4.

 Contemporary Vietnamese does not use ideograms any more. Also, Unicode currently does
not cover some ideograms particular to Vietnamese; their addition is planned for a future ver-
sion.

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 10 - San Jose, September 1995

ation is in many cases not very easy, and may interfere with the user’s interest of seeing
the base data, so that on-demand transliteration into a separate window, and imple-
mentation of transliteration as a higher-level text-changing process, similar to spell
checking, hyphenation, and so on, may be more desirable. Nevertheless, that font com-
position can be used in this context shows the versatility of this concept.

Another application of composite fonts is the visualization of usually invisible con-
trol characters. Such a function, visualizing tabulators, paragraph breaks, and so on, is
available in many text editors. Both an implementation in the application code and an
implementation in the main rendering code are complicated and can be rather slow.
The solution is to prepend a special font to the font cascade set by the user so that the
characters are remapped appropriately.

5 Implementation

The font composition and selection scheme described above has been successfully im-
plemented as part of the ongoing effort of globalizing the application framework ET++
[WGM89]. An application framework is a collection of cooperating object-oriented
software components providing most of the functionality for applications with graph-
ical user interfaces. ET++ itself has pioneered many object-oriented concepts
[GHJV95], comes with a wide variety of sample implementations [WG94] and multi-
media extensions [Ack94], and has also been used in commercial applications.

The current effort of globalizing ET++, known under the name of UNET++ (pro-
nounced ‘unity++’), is aimed at researching new concepts in the area of multiscript
processing and localization while exploiting the features of application frameworks
and demonstrating the special suitability of an application framework for the imple-
mentation of multiscript support.

5.1 Basic Multiscript Support in UNET++

Here, we give a short overview only of the base of UNET++; a detailed description is
available [DW94]. A solution for compiler support for wide string constants is de-
scribed in [Dür94]. All characters and character strings in UNET++ are uniformly en-
coded in Unicode, but for storage efficiency reasons, both wide (16 bit) and narrow (8
bit) string implementations are used, which are hidden from the application program-
mer by a common

String

 class. A flexible

Mapping

 class is responsible for on-de-
mand loading and efficient storage of conversion tables. A wide range of

Converter

s
has been implemented for easy conversion from and to external character encodings.

The class

KeyboardFrontend

 cares for keyboard input conversions ranging from
simple remapping to aggregation and server-based input conversion for East-Asian
languages.

KeyboardFrontend

s are composable in much the same manner as com-
posite fonts to achieve flexibility with a small selection of basic components. The var-
ious input methods can be selected from a “Keyboard” menu to the left of the help
menu, in a similar way to the keyboard menu icon on the Macintosh [App92]. From
the same menu, a dialog is available that allows to change the language of the user in-
terface during runtime, either for the whole application or for certain windows indi-

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 11 - San Jose, September 1995

vidually [Dür95]. Even in this case, although this is a major source of programming
work in other approaches (see [ODo94], p. 281), by using the inherent advantages of
the application framework, in the general case the programmer does not have to
change a single line of her code to make the application localizable.

5.2 Text Rendering Classes in ET++

ET++ uses object-oriented abstractions mainly for high-level concepts, such as

Text

(the actual text model, including stable information for styles and so on),

TextView

(high-level text display and control functionality),

TextFormatter

 (line breaking and
other formatting tasks),

TextPainter

 (intermediate level display and control func-
tionality), and

Port

 (low-level abstraction of the rendering system capabilities).
In contrast to other systems, the text is not directly represented with objects for in-

dividual glyphs

5

 [GHJV95, especially p. 34] or layout components such as runs of uni-
form directionality [How94]. The former approach is very flexible as long as there is a
one-to-one relation between characters and glyphs, but not easily extended for more
complicated cases. The later approach is using composition (of text from smaller text
portions) for a minor aspect that is not familiar to the general programmer and can
change very dynamically.

ET++ stores intermediate formatting information such as line divisions as runs that
apply to a contiguous sequence of characters, similar to font and style information.
Rendering and other operations that convert from internal representation to display
representation work on stretches of text, usually lines, in the

TextPainter

. This has
the advantage that the necessary operations, which are one of the major performance
bottlenecks of an interactive system, can be implemented with small and fast loops.

5.3 Fonts, Font Families, and Glyph Mappers

In the area of fonts, ET++ uses the classes

Font

,

FontFamily

, and

FontManager

[Wei92]. A

Font

 originally was a base font with implicit glyph mapping only. For sim-
ple font combinations, we introduced a single-step cascade in the form of one backup
font for each font [DW94]. Now, as described in Section 3.2, a

Font

 has to play both
the role of a composite font and of a base font. This is achieved by relegating the actual
font and glyph selection functionality to a new object, the

GlyphMapper

. Every

Font

can return two different

GlyphMapper

s that correspond to its roles as composite and
base font.

Some readers may think of glyph mapping (in base fonts) and font selection (in
composite fonts) as two rather unrelated tasks. The reason to have them done by one
and the same object is twofold. First, flexible composition requires that both leaf com-
ponents and composite components share the same superclass. Second, the function-
ality, seen on a more abstract level, is indeed the same, namely to map a sequence of
characters to a sequence of font-glyph pairs.

5.

 Note that the meaning of the term glyph here is different from its use in the field of character
encoding.

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 12 - San Jose, September 1995

The central method of

GlyphMapper is TranslateText. It maps an array of charac-
ters, or part of it, and fills an array of font identifiers, an array of glyph indices, and an
array of glyph-to-character indices, which allows correct cursor placement and similar
functions in the case of complex character-to-glyph relations. Each subclass of Glyph-
Mapper also has to provide a method that decides if it can map a character or not. Fig-
ure 1 shows the class hierarchy of GlyphMapper. Figure 2 shows an example of an
instance hierarchy. Methods to find the next character that cannot be rendered in a giv-
en font, or the next character that can again be rendered, can be implemented for in-
creased efficiency, but default implementations are provided by the base
GlyphMapper class. In addition, there are some methods used on initialization.

Figure 1: Part of the class hierarchy of GlyphMapper.

Figure 2: A configuration of composite and base fonts
for Helvetica with generic fonts for non-Latin scripts.

Font (together with FontManager) is subclassed for each display system, so that rel-
egating font selection to GlyphMapper has the additional advantage of separating dis-
play system dependent subclassing from subclassing for the implementation of new
font and glyph selection schemes (this is the bridge pattern from [GHWV95]). Al-

GlyphMapper

BaseMapper CascadeMapper CJKVSetMapper

One2OneMapper SimpleArabic ProprietaryArabic

Cascade

Helvetica

Greek

CJKV Set

Cascade

Cascade

Cascade

Chinese Japanese
Last Resort

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 13 - San Jose, September 1995

though it is possible that a certain form of font selection is necessary or available only
on a single system, in general similar font selection schemes will be used on all display
systems. An additional advantage of separating GlyphMapper and Font is that differ-
ent GlyphMapper strategies can be used with the same Font. Different strategies can
be used either in the same backup cascade, especially in connection with last resort
schemes, or in different cascades, e.g. masking out different parts or amounts of a font
depending on what other fonts it is combined with.

The actual references to GlyphMappers are not stored in Font, but in FontFamily.
Whereas Font represents font instances with individual styles (Roman, Italic,
Bold,…), and individual sizes for bitmap fonts, FontFamily represents a single con-
sistent typeface such as Times or Helvetica in all its appearances. Although there might
be situations where a backup cascade or a glyph mapping algorithm is different for dif-
ferent styles (e.g. an Italic version containing more ligatures than a Roman version of
a font), this is not the general case. If necessary, additional FontFamilies (sub-
families) can be introduced.

5.4 Lazy Evaluation

Another important aspect of associating GlyphMappers with FontFamilies instead
of Fonts is that loading of actual fonts is delayed, in a kind of lazy evaluation. In the
average case, with complete backup chains but only very few scripts used, this can
save large amounts of system memory.

Lazy evaluation also reduces errors on document transfer. Future document for-
mats may include definitions of composite fonts. Often, a font will be included in a
backup chain as part of a general definition, but not actually used in the document, be-
cause the originator knows very well that some of his local scripts will not be readable
in other locations. A system that tries to build up a full backup chain of Fonts from the
definition in the document will quickly produce an error, whereas this will not happen
if the fonts are evaluated lazily.

Another small advantage of lazy evaluation can appear depending on how the
height of a text is calculated. Evaluating the height of each character individually is of-
ten too slow, or impossible because the necessary information is not available from the
rendering system. On the other hand, calculating the maximal vertical extension of a
composite font may lead to unnecessarily large line spacing. Doing height calculations
by base font can be a very reasonable solution, as there is not so much height variation
is an average base font.

5.5 Advanced Features

The parameters passed to GlyphMapper::TranslateText as explained so far can
handle basic font selection and character-to-glyph mapping including many-to-many
cases. This interface can be extended to include more sophisticated features. One line
of extension would be to pass a reference to the overall context, usually the text to be
rendered. This can be used by a font set to obtain whatever additional information is
necessary.

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 14 - San Jose, September 1995

Specifically, language information could be obtained by a font set for use in fully de-
terministic CJKV disambiguation, instead of the more ad-hoc schemes described in
Section 4.2. Language information can also be used for other decisions in highest qual-
ity rendering (see [Bai94] for some examples). However, care should be taken not to
assume the availability of language information throughout a framework, for several
reasons: First, the average user is unwilling to supply language information for every
single bit of text. Second, languages do not form a single level partition of the idioms
spoken and written; there are hierarchies as well as mixtures. Third, because there is a
constant exchange of new words between languages, it is often difficult to decide to
what language a word belongs. Fourth, language is often not the information needed
for rendering purposes. The distinction between traditional and simplified Chinese,
for example, is only marginally a distinction of language; it is much more a distinction
of writing system and typographic tradition. On the other hand, the difference be-
tween Mandarin and Cantonese is a language difference, but is not relevant for CJKV
glyph disambiguation.

Passing a general context parameter might be difficult because of the varieties of
contexts; a full-fledged Text and a simple String do not have common access meth-
ods. So more specific parameters can be passed, and corresponding arrays can filled.
A first possibility is to pass a size parameter, which can be used in various composite
fonts to choose fonts of different nominal, but matching visual size. If an array of glyph
positioning offsets is also provided, baseline adjustment between different base fonts
and sophisticated diacritics processing (Arabic) can be integrated, and scripts that
stack characters vertically such as Tibetan could use a single glyph for the same shape
at different vertical offsets.

Another problem is the passing of context before and after the characters that actu-
ally should be rendered for ligaturing scripts. The solution we are currently pursuing
is to allow TranslateText to look at characters before and after those it has to trans-
late, and to limit this range with null characters. This is not only a problem of program-
ming technique, but also of desired functionality. Whereas there is no reason to break
context-dependent rendering on a change of attributes such as color, for a font or size
change this is less clear because it may not be possible to link the characters nicely.

6 Comparisons

Adobe for their PostScript language and printers provides a wide variety of function-
ality. Type 0 fonts [Ado90] available in Level 2 implementations also provide compos-
ite and base fonts. Although the terms coincide, the functionality is different. The main
aim is to interpret a stream of bytes to select characters from base fonts limited to a size
of 256 glyphs. Switching schemes or font arrays as defined in Section 3.3 are possible.
The newer CID/CMAP technology [Lun94] in addition allows easy sharing of com-
mon glyphs, e.g. between horizontal and vertical versions of a font.

In both cases, more sophisticated font selection schemes, e.g. using lookahead, are
not possible. This may not be that important because it can be assumed that the appli-
cation decides on exactly what glyphs from what fonts should be used. On the other

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 15 - San Jose, September 1995

hand, as PostScript is a full programming language, it is also possible to send a pro-
gram to the printer that implements the composition techniques described in this pa-
per. In the ET++ PostScript PrinterPort, we will most probably follow the former
alternative, but we are currently waiting for fonts from various scripts to become avail-
able at low cost.

Release 5 of version 11 of the X Window System provides the concept of a FontSet,
which corresponds again to a font array in our terminology, and is linked to the inter-
pretation of character strings in a locale-dependent manner [Fla91]. The Unicode envi-
ronment on AIX, based on XPG4, contains a universal font set, with a fixed association
of characters to fonts and subsequent glyph mapping [Kun94]. Plan 9 [PT93, PTH94]
also implements font arrays, mainly for sharing fonts of rare scripts, and in its 8 win-
dow system contains a very efficient caching mechanism. Unfortunately, character-to-
glyph mappings seem to be limited to one-to-one.

Mule, the multilingual extension of emacs [NHT93], uses fontsets to assign fonts to
character sets. A character set in a fixed way links a character tag to the number of
bytes for internal representation, the character width in display cells, and the character
encoding. Nonproportional display in not possible; it is simulated in the case of Arabic
by separating the Arabic glyph set into wide and narrow glyphs and using two fonts
and two encodings. Some backup is provided by using a font from the default fontset
if the corresponding font is not available.

The Macintosh uses fonts to determine scripts, which comprise encoding interpre-
tation, display behaviour, and associated input software [App92, App93]. Conforming
applications can easily handle multiscript text, but as the concept of a composite font
is lacking, in mixed text frequent explicit font changes are necessary. QuickDraw GX
[App94] provides a very wide range of typographic functionality with many ways to
control glyph selection and layout, but the function-based interface results in a rather
static approach.

7 Conclusions and Future Work

The concepts of font selection and font composition presented in Section 3 to 5 of this
paper largely satisfy the requirements put forward in Section 2. The flexible and ex-
pandible architecture we have designed and implemented allows to address issues on
many different levels of typographic quality, leads to an efficient use of resources
wherever necessary, and gives the programmer and the end user the benefits of a
“Unicode font” while avoiding its problems. The architecture also allows to easily in-
tegrate solutions for the missing glyph problem or CJKV glyph disambiguation, as
well as high-quality proprietary rendering algorithms.

To fully exploit the advantages of our approach, we plan to implement some new
GlyphMappers, e.g. for Indic scripts or Tibetan, and to further expand the pragmatic
aspects, e.g. GUI support for virtual font construction. Ideally, there should be some
program code with “typographic intelligence”, advising the user on optimal configu-
rations or creating them automatically, but as long as there is not even a consistent
metric for character height, this idea remains largely a dream.

1
2

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 16 - San Jose, September 1995

With respect to multilingualization of ET++ in general, working solutions are available
for most major aspects (input, conversion, display,…), and existing ET++ applications
as well as new applications successfully use these concepts. The main areas where
work still has to be done are the Unicode bidirectionality algorithm, search with regu-
lar expressions, a Unicode OS interface, character properties, collation, and so on. In
addition, programming for the world means that there are always new scripts, lan-
guages, and cultures that require some adaptions or additions.

The multilingualization effort of ET++, known as UNET++, has for some time now
been carried out separated from the main versions of ET++, but the features described
in this and previous papers are gradually integrated back into the main version of
ET++. In the meantime, we would be willing to share our code with other researchers
and developers interested in collaboration and experimentation. Interested parties
should contact the first author.

Acknowledgements

The first author thanks André Weinand for his continuous cooperation, Glenn Adams
for his advice on Vietnamese, and Peter Stucki for his continuous support. The second
author wishes to acknowledge that this work was jointly funded by Alis Technologies
Inc. and the Canadian government’s CANARIE program.

References

[Ack94] Ph. Ackermann, Direct manipulation of temporal structures in an object-oriented multime-
dia application framework, in: ACM Multimedia 94 Conference Proceedings, ACM, 1994.

[Ado90] Adobe Systems Incorporated, PostScript Language Reference Manual, Second Edition, Addi-
son-Wesley, Reading, MA, 1990.

[App92] Apple Computer, Inc., Guide to Macintosh Software Localization, Addison-Wesley, Reading,
MA, 1992.

[App93] Apple Computer, Inc., Inside Macintosh – Text, Addison-Wesley, Reading, MA, 1993.

[App94] Apple Computer, Inc., QuickDraw GX – Typography, Addison-Wesley, Reading, MA, 1994.

[Bai94] B. Bailey, Unicode as a glyph identification system, Proc. Unicode Implementers’ workshop 6,
Unicode, Inc., San Jose, CA, 1994.

[BC95] T. Berners-Lee and D. Connolly, Hypertext Markup Language – 2.0, Internet-Draft, June 16,
1995. (available as ftp://nic.nordu.net/internet-drafts/draft-ietf-html-spec-04.txt)

[BH93] Ch. Bigelow and K. Holmes, The design of a Unicode font, Electronic Publishing – Origination,
Dissemination, and Design, Vol. 6, No. 3, Sept. 1993 (Proc. RIDT’94), pp. 289-305. (Also con-
tained in Proc. Unicode Implementers’ workshop 6, Unicode, Inc., San Jose, CA, 1994.)

[Dür93] M.J. Dürst, Coordinate-independent font description using Kanji as an example, Electronic
Publishing – Origination, Dissemination, and Design, Vol. 6, No. 3, Sept. 1993 (Proc. RIDT’94),
pp. 133-143.

[Dür94] M.J. Dürst, Uniprep – Preparing a C/C++ Compiler for Unicode, ACM SIGPLAN Notices,
Vol. 29, No. 1, Jan. 1994, p. 53.

[DW94] M.J. Dürst and André Weinand, Introducing Unicode into an Application Framework, Proc.
Unicode Implementers’ workshop 6, Unicode, Inc., San Jose, CA, 1994.

[Dür95] M.J. Dürst, Localization Facilities for ET++, Proc. ET++ Workshop on Developing Building
Blocks and Frameworks, Dept. of Computer Science, University of Zurich, Switzerland, July
1995.

Font Selection and Font Composition M.J. Dürst and M.-A. Parent

7th International Unicode Conference - 17 - San Jose, September 1995

[Fla91] D. Flanagan, Programmer’s Supplement for Release 5, O’Reilly & Associates, Inc., Sebastopol,
CA, 1991.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns – Elements of Reusable Ob-
ject-Oriented Software, Addison-Wesley, Reading, MA, 1995.

[HP95] Y. Haralambous and J. Plaice, + virtual METAFONT = Unicode + Typography, to appear
in Cahiers GUTemberg, 1995.

[How94] W.H. Howry, Bidirectional text in an object oriented environment, Proc. Unicode Implement-
ers’ workshop 6, Unicode, Inc., San Jose, CA, 1994.

[Kun94] M. Kung, Unicode and XPG4, Proc.Unicode Implementers’ Workshop 6, Unicode, Inc., San Jose,
CA, 1994.

[Lun93] K. Lunde, Understanding Japanese Information Processing, O’Reilly & Associates, Inc., Sebas-
topol, CA, 1993.

[Lun94] K. Lunde, Creating Fonts for the Unicode Kanji Set: Problems & Solutions, Proc.Unicode Im-
plementers’ Workshop 6, Unicode, Inc., San Jose, CA, 1994.

[MB93] C.D. McQueen III and R.G. Beausoleil, Infinifont: a parametric font generation system, Elec-
tronic Publishing – Origination, Dissemination, and Design, Vol. 6, No. 3, Sept. 1993 (Proc.
RIDT’94), pp. 117-132.

[NHT93] M. Nishikimi, K. Handa, and S. Tomura, Mule: MULtilingual enhancement to GNU Emacs,
Proc. INET’93 (Internet Workshop ’93). (available as ftp://etlport.etl.go.jp/pub/mule/pa-
pers/INET93.ps.gz)

[ODo94] S.M. O’Donnell, Programming for the World: A Guide to Internationalization, Prentice Hall, En-
glewood Cliffs, NJ, 1994.

[PT93] R. Pike and K. Thomson, Hello world or or , Proceedings of
the Winter 1993 USENIX Conference, USENIX Association, Berkeley, CA, 1993, pp. 43-50. (Al-
so contained in Proc. Unicode Implementers’ workshop 6, Unicode, Inc., San Jose, CA, 1994.)

[PTH94] R. Pike, K. Thomson, and H. Trickey, Unicode in Plan 9, Proc. Unicode Implementers’ workshop
6, Unicode, Inc., San Jose, CA, 1994.

[Sat95] K. Sato, Class Libraries Unrestricted – Introduction to Application Frameworks and Design Pat-
terns, Toppan, Ltd., Tokyo, Japan, 1995 (in Japanese).

[Uni92] The Unicode Consortium, The Unicode Standard – Worldwide Character Encoding, Version 1.0,
Volume 2, Addison-Wesley, Reading, MA, 1992.

[WGM89] A. Weinand, E. Gamma, and R. Marty, Design and Implementation of ET++, a Seamless Ob-
ject-Oriented Application Framework, Structured Programming, Vol. 10, No. 2, 1989, pp. 63-
87.

[Wei92] A. Weinand, Objektorientierte Architektur für graphische Benutzeroberflächen (in German),
Springer-Verlag, Berlin, 1992.

[WG94] A. Weinand and E. Gamma, ET++ – a Portable, Homogenous Class Library and Application
Framework, Computer Science at UBILAB – Strategy and Projects (Proc. UBILAB Conference
’94, Zurich), W.R. Bischofberger and H.-P. Frei, Eds., Universitätsverlag Konstanz, Kon-
stanz, 1994, pp. 66-92.

Ω

καληµε′ρα κo′σµε

